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The fundamental problem of dynamics involving determining the generalised accelerations and reactions of constraints as a 
function of the applied forces is considered for mechanical systems with k 2 1 non-ideal geometrical constraints. A relation is 
established between this problem and the analysis of the singularities of piecewise-smooth mappings of a space Rk into itself. 
For Coulomb-type friction, a criterion for there to be no paradoxes is obtained and it is shown that when k = 1 possible singularities 
are convolutions, while when k = 2 they are subdivided into a fold, a casp and a double fold. The well-known PainlevC-Klein 
example is considered in detail for cases of bilateral and unilateral contacts; a complete list of possible paradoxical situations is 
presented for the first time. 0 2003 Elsevier Science Ltd. All rights reserved. 

Paradoxical situations of the non-existence or non-uniqueness of the solution in systems with one pair 
of frictions were discovered for the first time by PainlevC in 1895 [l]. A number of sufficient conditions 
for there to be no paradoxes were obtained in [2-6] in the case when k 2 2. 

1. CONSTRUCTION OF THE DEFINING MAPPING 

We will introduce generalized coordinates ql, q2, . . . , qn such that the first k 2 n of these are equal to 
the distances between those bodies between which contact is possible. Hence, the equation qj = 0 
(j = 1 ? ... 7 k) indicates the presence of a contact in the jth pair. We will assume that all these equalities 
are satisfied at the instant of time considered. 

Bilateral of unilateral constraints between the bodies are possible depending on the constructive 
features. In the first case, the corresponding coordinate qj is identically equal to zero, while in the second 
case it can take positive values. At the stage when setting up the equations of motion, we will validate 
the principle of constraint elimination and assume that the system has n degrees of freedom, without 
limiting the possible values of the coordinates. We will write the equations of motion in the form 

= Qj + i Ri”, i = 1, 2, . . . . n 
j= I (1.1) 

q, = . . . = q,=o, q,+,20 ,..., q/(20 

where T is the kinetic energy of the system, Qi are generalized forces and Ry) are the components of 
the reaction of the jth constraint (unilateral or bilateral). 

We will solve the fundamental problem of dynamics involving determining the generalized 
accelerations and the reactions of the constraints. If the jth constraint were ideal, only the component 
~j = Ry’ would be non-zero. The presence of non-zero values of R(;i)(i f j) indicates that there is friction. 
The friction law is described as the dependence of the components #(i f j) on Nj for given 
values of the generalized coordinates and velocities 

RI” = F,(q, i, Nj), j = 1, 2, . . ., k (1.2) 

In particular, for viscous friction the functions Fij are independent Of Nj, while for Coulomb sliding friction 
(we will assume the slipping velocity to be non-zero) they are linear with the respect to the modulus 
of the normal reaction 
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Substituting expressions (1.2) into Eqs (l.l), we obtain 

c;i = Q+N+F(N)+@ 

q = tql, . . . . q,)T, N = (N,, . . . . A’,,% . . . . of 
(1.4) 

where C = C(t, q) is a matrix, quadratic in terms of the velocities, of part of the kinetic energy of the 
system, F(N) = 11 Fv 11 is an IZ x IZ matrix, describing the friction, while the column vector 0 = @(t, q, tj) 
is made up of terms obtained on expanding the derivatives in Eqs (1.1) and not containing generalized 
accelerations. 

In system (1.4) 4 and N are unknown. Note that the variables qj and Ni are not independent: for 
bilateral constraints qj = 0 (j = 1, . . . , 1) while for unilateral constraints the following conditions are 
satisfied [7, 81 

cji20, Ni20, q,N, = 0; i = l+ 1, . . . . k (1.5) 

Relations (1.5) enable us (after changing to dimensionless form in (1.4)) to associate a unique variable 
with the pair iii, Nj by the formula 

zi = xi-yi, xi = iii, yi = N,; i = 1+ 1, . . . . k (l-6) 

where the unique pair iii, Ni, satisfying conditions (1.5), corresponds to each value of Zi- 
These considerations enable the number of unknowns in system (1.4) to be reduced to its order n. 

Further simplification of the system can be achieved by eliminating the quantities ci;s (s = k + 1, . . . , n) 
from it using the last IZ - k equations. The equations finally obtained have a form similar to (1.4), but 
with changed expressions for C, Q, F and 0. For clarity, we will keep the previous notation, assuming 
n = k in (1.4). 

Equations (1.4) give the mapping 

Q = S(z), S(z) = C&N-F(N)-+, zj = Nj, ijj = 0; j = 1, . . . . 1 (1.7) 

where the variables zl+ i , . . . , zk are defined by expressions (1.6). The fundamental problem of dynamics 
being discussed reduces to transforming the mapping (1.7). The latter will be continuous if all the 
functions Fg in formulae (1.2) are continuous with respect to Nj. However it does not follow from the 
differentiability of these functions when 1 < k that S is differentiable, since the presence of unilateral 
constraints leads, in view of definitions (1.6), to a discontinuity when zi = 0. Moreover, discontinuities 
on the surfaces Nj = 0 also correspond to bilateral constraints with dry friction of the form (1.3). 

Hence, the defining mapping (1.7) in general is piecewise-smooth, and in the most important special 
case of dry friction it is piecewise-linear, with discontinuities in the coordinate planes of the space Rk. 
If each of the 2k matrices of this mapping are non-degenerate, the number of solutions of the 
fundamental problem of dynamics lies in the range from 0 to 2k, while in the case of degeneracy this 
number may be infinite. One can use the results in [9, lo] to check the non-degeneracy directly in system 
(1.4). 

We will use a similar approach also in more complex cases when the friction is described by a law 
different from (1.2). In this case it may be necessary to consider the mapping (1.7) in a space of higher 
dimensionality thank. For example, Amonton’s law describes dry friction between bodies at the instant 
when the velocity of relative slipping is equal to zero. In this case the friction forces depend not only 
on the normal reactions but also on the tangential accelerations. Hence, for a unique determination 
of Q from system (1.4) it is necessary to specify these accelerations or (when they are equal to zero) 
the friction forces. We will not discuss these situations in this paper. 

2. THE CRITERION FOR THE EXISTENCE AND UNIQUENESS 
OF SOLUTIONS 

In the case of dry friction (1.3) the mapping (1.7) takes the form 

S(z) = Cg -N-@INI -8, INI = (IN,/, (N,I, . . . . INkIf (2-l) 
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where Q, = II Pv(q, 4) II is a square matrix of order it, the elements of which are obtained from (1.3) 
when reducing the order of system (1.4) from 12 to k. 

We will represent the variables Zj (j = 1, . . . , I) in the form 

zj = xi-yi, xi = (lNj[ +Nj)/2, Yj = (lNjl-Nj)/2; j = 1, . . ..I (2.2) 

The variables xj and yj are obviously complementary, i.e. relations of the type (1.5) are satisfied for 
these. For values of the subscript j = I + 1, . . . , k, corresponding to unilateral constraints, these variables 
are given by formulae (1.6). 

We express the unknownszj in (2.1) in terms OfXj andyi using (2.2). We finally obtain a linear algebraic 
system of k equations with k pairs of complementary variables 

A,x-A,y = B, B = Q+@, x,y,Be Rk, A,,2~ Rkxk 

x20, y20, xy = 0 
(2.3) 

Proposition 1. The fundamental problem of dynamics of finding the generalized accelerations and 
the reactions of the constraints in system (1.1) with dry friction (1.3) for specified values of the 
coordinates and velocities (the slipping velocities in contacts with friction are non-zero) for any applied 
forces has a unique solution if and only if all the principal minors of the matrix A* = A;’ A2 in system 
(2.3) are positive. 

The proof of this criterion for Eq. (2.3) was given previously in [ll], and the relation between this 
equation and the main problem of dynamics was established in the previous section, 

In practice, the evaluation of the matrix A * can be reduced to expressing the variables x in terms of 
y from system (2.3). We will note some special cases of the solution of this problem. 

1. If I = 0, i.e. all the constraints with friction have a unilateral form, then 

A, = C, A, = E,+@ 

Since C is symmetrical and positive-definite, to check the conditions of Proposition 1 we must convince 
ourselves that all the corner minors of the matrix A2 are positive. 

2. If 1 = k = 1, i.e. there is a unique, albeit bilateral, constraint with friction, the criterion takes the 
form A1A2 > 0. Assume 4 = 0 in (2.1), we haveAl, 2 = -1 7 a’, and hence this inequality implies that 
p-q < 1. 

~. 

Example. Consider a rod of length 21, the ends of which slide along two parallel straight lines (Fig. la). 
This system was first analysed by Painleve [l] on the assumption that both constraints are bilateral and 
non-ideal. This example later became a popular model for demonstrating different ideas for overcoming 
the paradoxes in systems with friction (see [12-171). 

Here we will also consider a problem which allows of different forms of contact, i.e. by replacing one 
or both constraints by a unilateral constraint (in this case the rod can be situated in the space between 
the straight lines). 

We will assume that the rod slides to the right at a given instant of time. We will put the mass of the 
rod equal to unity and write for it the theorem on the motion of the centre of mass and the theorem 
of moments 

5 a 0 

/ 
1 

2 

\/ 3 
a PI 

(4 (b) 

Fig. 1 
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f = -p,(N,I-p21N2(+X, L’= -N,+N,+Y 

k2i@ = h(p,(N,I -p21N2()-b(N, + N,)+M, b = lcoscp+O 
(2.4) 

where 21 is the length of the rod, k is its radius of inertia, 2h is the distance between the directrices, x, 
y and cp are the coordinates of the centre of mass and the angle between the rod and the directrices, 
and X, Y and A4 are the applied forces and moment. 

We will change from y, cp to the coordinates 

q, = h-y-fsincp, q2 = h+y-lsincp 

representing the distances from the ends of the rod to the directrices. At the instant of time considered 
q1 = q2 = 0, & = (i2 = 0, whe rice it follows that j = 0, Cp = 0. Taking Eqs (2.4) into account we obtain 

ci’; = (-1)“1(N,-N2-Y)+$N,+N2)-~(P,~N~~-P~~N~~)-~A4~ i = 1,2 (2.5) 

We will consider different cases of the contacts. 
1. Both constraints are bilateral, i.e. q1 = 0, q2 z 0. We determine the variables Xj,yj (j = 1, 2) from 

formulae (2.2) and then solve system (2.5) for X~ where the left-hand sides are replaced by zeros. We 
obtain 

Xi = Yi + K(PIYI -CLOYS) + &CM + (CL2’ + b)Y) 

x2 = YZ+KW,Y,- P2~2)+&4+(P,h+b)Y) 

K = 2hl(2b + h(p2 - j.~,)) 

(2.6) 

The matrix, which we discussed in Proposition 1, looks as follows: 

A* = 
I 

l+W --KC12 

WI 1-'W2 II 
(2.7) 

A check of the conditions of Proposition 1 reduces to investigating the signs of the diagonal elements 
of matrix (2.7) and its determinant A. As a result of some calculations were obtain 

a,: = 
2b+ G~)‘+‘WI +P2), i _ 1 2 A = detA 2b+W,--~2) 

2b+h(p2-p,) - ’ ’ = 2b+Wz--PI) (2.8) 

The positiveness of all three expressions of (2.8) is equivalent to the single inequality 

p, + p2< 2ctgcp, ctgcp = b/h (2.9) 

Note that condition (2.9) is stronger than that obtained by Painleve [l] (assuming the inequality 
v2> I4 

P2-k<2w+P (2.10) 

To clarify this disagreement we must bear in mind that Painleve [l] confined himself to the case 
Y = 0. It then follows from Eqs (2.4) that Ni = N2, i.e. x1 = x2 andyi = y2 in formulae (2.6). The mapping 
(2.6) reduces to the one-dimensional mapping 

x = (1 +(P,-P+)Y = YA (2.11) 

As it applies to the mapping (2.11) the condition of Proposition 1 reduces to the inequality 

JCL2-C(11<2cw 

which agrees with Painleve’s result (2.10). 
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Note that the condition for there to be no paradoxes (2.9) also remains true in the case when, at the 
initial instant of time, the rod moves to the left. This can be shown by turning Fig. 1 through 180” and 
interchanging the coefficients pl and p2. 

2. If both constraints are unilateral, i.e. q1 2 0, q2 2 0, then Nt 2 0, N2 2 0. In this case IN] = N, 
and the additional variables are defined by formulae (1.6). The elements of the matrix A* are the 
coefficients of N in Eqs (2.5) and take the form 

k2az = k2+b2+(-l);p;bh, i = 1,2; k2a$ = -k2+b2+kibh, i#j; i,j = 1,2 

The conditions of Proposition 1 reduce to the inequalities 

k,bh<k2+b2, -p2bh<k2+P2> Pl-P2<2bJh (2.12) 

3. One of the constraints is unilateral while the second is bilateral: ql 3 0, q2 = 0. In system (2.5) we 

Put 
x, = q,, y, = N,, x2 = (IN21 + N,)/2, y2 = (/IV21 -N,)LL Y = 0, M = 0 

and express the variables x1, x2 in terms of yr, y2 

x,(k2 + b2 + p2bh) = 2by,(2b + h(p2 - p,)) + 4p2bhy2 

x,(k2+b2+p2bh) = yl(k2-b2+p,bh)+y2(k2+b2-p2bh) 

The conditions of Proposition 1 take the form 

p21blh < k2b2(p, - p2)bh < 2b2(p, + p2)bh < 2b2 (2.13) 

4. In the case when q1 = 0, q2 > 0, which is the opposite of case 3, it is sufficient to replace b by -b 
in conditions (2.13) and interchange the coefficients p1 and p2. The conditions for there to be no 
paradoxes take the form 

p, lb1 h < k2 + b2(p, - p2)bh < 2b2 - (cl1 + p2)bh < 2b2 (2.14) 

Regions (2.9), (2.12), (2.13) and (2.14) are constructed in the plane of the parameters (p.r and ~2) in 
Fig. l(b) for the case when b > k. The set of solutions of inequality (2.9) represents an isosceles right 
triangle with the leg of the triangle a = 2b/h, while conditions (2.12) and (2.14) represent one and the 
same rectangular trapezium with height p = (k2 + b2)/bh and bases a and a + p, parallel to the ordinate 
axis. The region (2.13) is a trapezium of height p and bases a and c1- p, parallel to the abscissa axis. 
In the case when 0 c b < k the first trapezium contains the triangle while region (2.13) coincides with 
(2.10). 

We can similarly interpret the regions where there are no paradoxes in the case when b < 0, for which 
it is sufficient to interchange the coefficients pl and p2 while simultaneously changing the sign of b. 

3. CLASSIFICATION OF THE PARADOXES IN THE CASE WHEN k C 2 

We will discuss typical paradoxes in mechanical systems with one or two pairs of Coulomb friction. In 
the simplest case when k = 1, the defining mapping (1.7) is a piecewise-linear function of the same 
variable. The graph consists of two rays converging at the origin of coordinates (Fig. 2). If the coefficients 
A1 andA in (2.3) have the same signs, the graphs intersect thez axis, whence it follows that the defining 
mapping and the absence of paradoxes are mutually equivalent (the continuous line in Fig. 2). If 
AlA2 < 0, the rays lie on the same side of the z axis and, depending on the sign of B, the mapping has 
two or none originals (the dashed line in Fig. 2). Such a situation is called a fold the theory of singularities. 

We will now consider the case when k = 2. We will assume all the principal minors of the matrix A * 
are non-zero, in which case the number of solutions of Eq. (2.3) for any right-hand side is finite [9]. 
The conditions of Proposition 1 in the case when k = 2 reduces to the following set of three inequalities 

a;“, > 0, aF2 > 0, A = detA* > 0 (3.1) 
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Fig. 2 

Conditions (3.1) guarantee the existence of a unique solution of system (2.3) for any vector B. 
The non-fulfrIment of a least one of inequalities (3.1) indicates a paradoxical situation when the 

solution is non-unique or does not exist for certain B. We multiply both sides of Eq. (2.3) by the matrix 
A-’ 

x-A*y = S*(z) = B*, B* = A-‘B (3.2) 

To analyse possible cases we will construct transforms of each quadrant of the coordinate z-plane into 
a B-plane due to the action of the mapping, defined by the left-hand side of formula (3.2). Since this 
mapping is piecewise-linear, the transforms of the coordinate axes are lines having a discontinuity at 
the origin of coordinates. We will denote the coordinate unit vectors in the z- and B-planes by el, 2 and 
e\, 2 respectively; then 

S*(e,) = e;, S*(e,) = ei, s1 = S*(-e,) = -ar,e; -uf,e; 

s2 = S*(-e2) = - a;l;e; - at2e; 

Consequently, S*(&) = L; (we denote the jth quadrants of the coordinate z-plane and B-plane by 
Li and Lj, respectively), the region S*(L2) is bounded by the half-lines with direction vectors e; and sl, 
S*(L4) lies between e; and s2, S*(L3) lies between s1 and s2. 

The location of the vectors s1 and s2 in the B-plane depends on the elements of the matrix A* and, 
in turn, determines the nature of the singularity of the mapping S*. In the regular case (3.1) the vectors 
s1 and s2 lie outside the first quadrant and form a right system, and hence the sets S*(Lj)(j = 1, 2, 3, 
4) do not intersect pairwise, and their sum comprises the whole B-plane. 

In Fig. 3 we show possible forms of the mapping S*. 

Case a 
a;1 > 0, a?2 > 0, AcO, af2c0 

(consequently, a& < 0). Here s1 E L;, s2 E L& and the system of these two vectors has a left orientation 
(Fig. 3a). Each point lying inside the obtuse angle between the half-lines and the direction vectors s1 
and s2 has two originals, and none outside this angle. In the theory of singularities, such a situation is 
called a fold in this context the fold line is a dashed line. 

Case b 
4 > 0, a,*,>O, A<O, ar2>0 

(consequently, a;i > 0). Here s1 E L;, s2 E Lj, and the system of these two vectors, as before, has a 
left orientation (Fig. 3b). Points lying inside the angle formed by these vectors have three originals, 
and outside it one original. Such a situation is called a cusp. 

Case c 
a;“1 < 0, a;2 > 0, A>O, a&<0 (3.3) 
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0 

(e) 
b I ’ SI 

(0 w 
Fig. 3 

(consequently, u& > 0). Here we have s1 E L& s2 E L; (a right orientation, Fig. 3~). Points lying inside 
the angle by the vectors s1 and e; have two originals, and none outside this angle (a fold). 

Case d 

uf, < 0, a&>O, A>O, a&>0 (3.4) 

(consequently, & c 0). Here s1 E L;, s2 E L; (a right orientation, Fig. 3d). Points lying inside the angle 
formed by the vectors s1 and e; have three originals, and outside this angle one original (a cusp). 

Case e 
afl c 0, a,*,>O, A<0 

The vector s1 lies in the right half-plane while s2 lies in the lower half-plane (left orientation, in Fig. 3e 
we show the subcase u$ > 0, if u$ < 0, then s1 E L;). Points lying outside the angle formed by the 
vectors s1 and e; (the angle is drawn in the positive direction from the first vector to the second and 
can be greater than the expanded form), have two originals, and none outside this angle (a fold). 

Case f 
aT,<O, a,*,cO, A>0 

The vector sr then lies in the right half-plane while s2 lies in the upper plane (right orientation, in Fig. 3f 
we show one of the four possible subcases a& > 0, a& < 0). Points of the B-plane in this case can have 
four, two or none originals, which characterizes a double fold (the form of this singularity can be 
represented by folding a sheet of paper into four so that the line of the second fold is not perpendicular 
to the line of the first fold). 

Case g 
a:1 c 0, a,*,<O, A<O, a?*>0 

(consequently, a& < 0), then s1 2 E Lj (left orientation, Fig. 3g). Points lying in the first quadrant, have 
two originals, while the remaining points have none (a fold). 

Case h 
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(consequently, a& > 0). We have s1 E LA, s2 E L; (left orientation, Fig. 4h). Points lying in the first 
quadrant have three originals, while the remaining points of the plane have a single original (a cusp). 

Remark 1. In Cases c--c the inequality a;; a& < 0 is satisfied. In this case, it was assumed above that a;“I < 0, but 
the conclusions drawn on the qualitative type of singularity also remain true for a& < 0 if we replace a& and a; 
in inequalities (3.3) and (3.4). We can convince ourselves of the correctness of this observation by changing the 
numbering of the variables q1 and q2. 

Remark 2. The problem of resolving the paradoxical situations lies within the framework of the initial formulation 
of the problem and requires the inclusion of additional physical considerations (see, for example, [12-171). Note, 
however, that the above-mentioned singularities cannot be eliminated by correcting the Coulomb friction laws: 
the presence of a break in the characteristic ensures that the type of singularity is preserved (Figs 2 and 3) at the 
origin of coordinates. Moreover, a “corrected” friction law may lead to the occurrence of additional singularities. 
For example, a case was considered in [17] when the friction coefficient decreases as the normal load increases. 
The corresponding bifurcation diagram is shown schematically in Fig. 2 by the dash-dot line: here there are two 
folds. As a result the paradox of the non-existence of solutions is eliminated, but the non-uniqueness remains (in 
this case, in a certain range of values of B, the number of solutions increases to three). 

Example. We will discuss the nature of the possible paradoxes in the Painleve-Klein example, considered in the 
previous section. We will confine ourselves to the classical formulation of this problem, assuming both constraints 
to be bilateral. As follows from Eqs (2.Q the relation a; a& < 0 is equivalent to condition (2.9) where the inequality 
sign is reversed. Moreover, the inequality A < 0 is equivalent to condition (2.10) where both sides are taken in 
absolute value. Hence, in the plane of the parameters (ul, u2) there are three regions in which conditions (3.1) 
for the existence of a unique solution (Fig. lc) break down. In this case regions 1 and 3 correspond to “fold” type 
discontinuities (case e) while region 2 corresponds to a cusp singularity (case d). 

This research was supported financially by the Russian Foundation for Basic Research (02-01-00520). 
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